COLLEGE OF SCIENCE AND MANAGEMENT DEPARTMENT#scie# Mediative of Word in Electricity Recognized under Section 2 (1) of the UGC Act 1956 COURSE FOR THE SOLUTION FOR THE SECTION 2 (1) of the UGC Act 1956

(2016 – 2017 onwards)

Name of the Pr	Jame of the Programme: M. Sc., MathematicsSemester		
Course Code	Name of the Course		Course Outcomes
P16MA11	ALGEBRA	CO 1	Gain expertise in the basic concepts of group theory with the help of numerous examples
		CO 2	Understand permutation groups and Normal subgroups and discuss on counting tricks in algebra.
		CO 3	Bring out the key steps involved in proving Sylow theorems and use Sylow's theorems to classify groups of finite order upto 120
		CO 4	Learn the fundamental concept in field theory of field extensions and would see the idea of generating new fields.
		CO 5	Have clear cut idea in the notions of Galois groups, normal extensions and separable extensions and illustrate them with various examples
	REAL ANALYSIS	CO 1	Describe fundamental properties of the real numbers that lead to the formal development of real analysis
		CO 2	Demonstrate an understanding of limits ad how that are used in sequences
		CO 3	Demonstrate an understanding of limits ad how that are used in series
P16MA12		CO 4	Demonstrate an understanding of limits ad how that are used in sequences Examine and recognize the continuity of real functions.
		CO 5	Demonstrate an intuitive and computational understanding of set theory, Continuity and solving application problems. This will be assessed through homework, class quizzes and tests, and a final exam.
		CO 1	The general solution of the first order linear homogeneous equations
P16MA13	ORDINARY DIFFERENTIAL EQUATIONS	CO 2	Understand the utility of the theory of power series which is studied in Real Analysis course through solving various second order differential equations.
		CO 3	Get introduced to the Hyper geometric functions which arises in connection with solutions of the second order ordinary differential equations with regular singular points.
		CO 4	The problems arises in Mathematical physics using properties of special functions.
		CO 5	Understand the importance of studying well- posedness of the problem namely existence, uniqueness and continuous dependence of first order differential equations through Picard's theorem

	CO 1	Understand and work on the fundamental concepts	
	GRAPH THEORY	001	of graphs
		CO 2	Understand the graph theory-based tools in solving
P16MA14			practical
			problems
		CO 3	Understand basic concepts in Trees and discuss
			matching problems and its applications elsewhere.
		CO 4	Comprehend and work on the concepts of planarity
			and discuss the dual of a plane graph.
		CO 5	The concepts of K- colouring graphs
		CO 1	Understand concept of calculus of variations and
P16MA15 P16MA15 P16MA15 P16MA15 VARIAT ANI TRANSF	INTEGRAL	01	integral equations and their applications
	EQUATIONS, CALCULUS OF VARIATIONS AND TRANSFORMS	CO 2	To understand the different types of transforms and
			their properties.
		CO 3	Described the Hankel Transform equations
		CO 4	Understand the Fredholm's equations
		CO 5	The Fredholm's equations

COLLEGE OF SCIENCE AND MANAGEMENT A Co Educational Institution Affiliated to Bharathidasan University Recognized under section 2(f)&12(B) of the UGC Act 1956

NH - 7 , Karur-Madurai National Highway,Puthambur (PO),Karur - 639003 , Tamilnadu

ชิตธิธชิ 2.00ชนิน 2.11กิญ

Name of the l	Name of the Programme: M. Sc., Mathematics Semester –		
Course Code	Name of the Course		Course Outcomes
		CO 1	Understand the complex number system from geometric view point. Will gain mastery in arguments on C* and logarithms. Workout the path integrals on the complex plane.
P16MA21	COMPLEX ANALYSIS	CO 3	Understand the central theme of Cauchy theory, viz., existence of local primitives and local power series Expansion
		CO 4	Get acquainted with various techniques of proving fundamental theorem of algebra, open mapping theorem, maximum modulus theorem and Liouville's theorem.
		CO 5	understand the Laurent series expansion.
		CO 1	Realize that the subject evolves as a generalization of solving a system of linear equations
P16MA22 LINEA ALGEB	LINEAR	CO 2	Discuss in detail the basic concepts of Linear dependence, basis and dimension of a vector space. The students will be able to demonstrate how the geometric ideas turn into rigorous proofs.
	ALGEBRA	CO 3	Master the dimension formula and rank and nullity theorem which are often exploited.
		CO 4	Having got trained in numerous examples the student realizes the isomorphic theory of linear transformations and matrices.
		CO 5	Learn the theory of determinants and put them in practice
		CO 1	Classify first order partial differential equations and their solutions.
P16MA23	PARTIAL DIFFERENTIAL EQUATIONS	CO 2	The first order equations and nonlinear partial differential equations using
		CO 3	Use the method of characteristics to solve first order partial differential equations.
		CO 4	Identify and solve the three main classes of second order equations, elliptic, parabolic and hyperbolic.
		CO 5	method of separation of variables.
P16MAE1B	MATHEMATICAL MODELING	CO 1	Understand the concept of a mathematical model and explain the series of steps involved in mathematical modeling.
		CO 2	Classify different classes of mathematical models.
		CO 3	Features of a good model and the benefits of using a mathematical model
		CO 4	Identify some simple real-life problems that can be solved using mathematical models.
		CO 5	Convert the physical problems as differential equations through mathematical modeling

COLLEGE OF SCIENCE AND MANAGEMENT A Co Educational Institution Affiliated to Bharathidasan University Recognized under section 2(f)&12(B) of the UGC Act 1956

NH - 7 , Karur-Madurai National Highway,Puthambur (PO),Karur - 639003 , Tamilnadu

วิผูลิลอ์ 2.009นิน 2.11กิญ

Name of the P	rogramme: M. Sc., Mat	hematics	Semester – III
Course Code	Name of the Course		Course Outcomes
	CLASSICAL DYNAMICS	CO 1	Understand the important definitions and introductory concepts like the ideas of virtual work and d'Alembert's principle
P16MA31		CO 2	The Lagrange's equations of motion using d'Alembert's principle.
FIONIASI		CO 3	Understand the nature of equations of motion for holonomic and nonholonomic systems.
		CO 4	Understand the idea of impulsive constraints
		CO 5	Compared the dissipative systems and velocity dependent potentials
P16MA32	MEASURE AND INTEGRATION	CO 1	Understand the concept of integration using measures
		CO 2	Understand the concept of integration using measures
		CO 3	Analyze measurable sets and Lebesgue's measure
		CO 4	Categorize differentiation and integration of monotonic functions
		CO 5	Understand measurable function
		CO 1	Understand the concepts of topological spaces
	TOPOLOGY	CO 2	The concepts of metric topology
P16MA33		CO 3	Discuss connected spaces, the components of a space
		CO 4	Explain compact spaces
		CO 5	Distinguish Urysohn's lemmab and Tietze extension theorem
P16MAE3B	DISCRETE MATHEMATICS	CO 1	The concepts like Boolean algebra, coding theory
		CO 2	Introduce the different notions grammar
		CO 3	The concepts of Lattices
		CO 4	Learned the concepts of Boolean Algebra
		CO 5	Understand the concepts phrase structure grammars.
P16MAE4B	ADVANCED OPERATIONS RESEARCH	CO 1	The LPP by Dynamic programming methods
		CO 2	Formulate simulation models
		CO 3	Determine solutions for Non-linear programming problems
		CO 4 CO 5	Determine the Inventory models The concepts of game theory

Padade 2 and 2 and

Name of the Programme: M. Sc., Mathematics Ser			matics Semester – IV
Course Code	Name of the Course	Course Outcomes	
		CO 1	The three structure theorems of Functional Analysis viz.,
		CO 2	Hahn-Banach theorem, Open mapping theorem and
P16MA41	FUNCTIONAL		Uniform boundedness principle.
	ANALYSIS	CO 3	Hilbert spaces and operator theory leading to the spectral theory of operators on a Hilbert space.
		CO 4	Estimate Hahn Banach theorem and its consequences
		CO 5	Understand the closed graph theorem and its properties
		CO 1	Described the tangent, normal, and binormal.
	DIFFERENTIAL	CO 2	Understanding the concepts of osculating circle, sphere
P16MA42	GEOMETRY	CO 3	The fundamental forms and its application
		CO 4	Appraise fundamental forms and its applications
		CO 5	Determine the geodesic, gauss equation
	ADVANCED	CO 1	Determine the theory behind various numerical methods
	NUMERICAL	CO 2	Understand these methods to solve mathematical problems.
P16MA43	ANALYSIS	CO 3	Understand the concepts of Interpolation
		CO 4	Understand the concepts of Gauss Legendre Integration method and Lobatto Integration Methods only
		CO 5	The concents of R-K method
		CO 1	The students to the charm niceties and nuances
		001	in the world of numbers.
P16MAE5C	ALGEBRIC	CO 2	Highlight some of the Applications of the Theory of
	NUMBER		Numbers
	THEORY	CO 3	Understand the concept of The Legendre symbols
		CO 4	The concept Combinatorial number theory
		CO 5	Applications of Diophantine Equations